Streaming Algorithms for Set Cover

Sariel Har-Peled (UIUC) Piotr Indyk (MIT) Sepideh Mahabadi (MIT) Ali Vakilian (MIT)

Set Cover Problem

- Input: a collection S of sets $S_1...S_m$ that covers $U = \{1 ... n\}$
 - i.e., $S_1 \cup S_2 \cup \cdots \cup S_m = U$
- Output: a subset $\mathcal I$ of $\mathcal S$ such that:
 - \mathcal{I} covers U
 - $|\mathcal{I}|$ is minimized
- Classic optimization problem:
 - NP-hard
 - Greedy (ln n)-approximation algorithm
 - Can't do better unless P=NP [Feige 98][Alon, Moshkovitz, Safra 06][Dinur, Steurer 14]

Streaming Set Cover [SG09]

- Model
 - Sequential access to S_1, S_2, \dots, S_m
 - One (or few) passes, sublinear (i.e., o(mn)) storage
 - (Hopefully) decent approximation factor

- Why?
 - A classic optimization problem
 - Application in "Big Data": Clustering, Topic Coverage
 - One of few NP-hard problems studied in streaming
 - Other examples: Clustering, Max-Cut, Sub-Modular Optimization, FPT

1,2,4,

2,5

4

(5)

Previous and Our Results: Algorithms

Algorithms	Approximation	Passes	Space	Туре
Greedy Alg	$O(\log n)$ $O(\log n)$	1 n	O(mn) O(n)	Deterministic Deterministic
[Getoor and Saha 09]	$O(\log n)$	$O(\log n)$	$O(n\log n)$	Deterministic
[Emek and Rósen 14]	$O(\sqrt{n})$	1	$\tilde{O}(n)$	Deterministic
[Demaine, Indyk, M , Vakilian 14]	$O(ho 4^{1/\delta})$	$O(4^{1/\delta})$	$\tilde{O}(mn^{\delta})$	Randomized
[Chakrabarti, Wirth 16]	$O(n^{\delta}/\delta)$	$1/\delta - 1$	$\tilde{O}(n)$	Deterministic

This Work	$O(ho/\delta)$	$O(1/\delta)$	$ ilde{O}(mn^{\delta})$	Randomized
-----------	-----------------	---------------	-------------------------	------------

p = approximation guarantee
for offline Set Cover

n = number of *elements* m = *number of sets*.

Previous and Our Results: Lower-bounds

[Guha and McGregor] A *p*-pass streaming algorithm of problem **P** using *s* bits of storage yields a (2p - 1) rounds protocol with (2p - 1)s bit of communication for **P** in 2-party communication complexity model.

Lower bounds	Approximation	Passes	Space	Туре
[Nisan 02]	$(\log n)/2$	Any	$\Omega(m)$	Randomized
[Emek, Rosen 14]	\sqrt{n}	1	$\Omega(n)$	Randomized
[Demaine, Indyk, M , Vakilian 14]	Constant	Any	$\Omega(mn)$	Deterministic
[Chakrabarti, Wirth 14]	$\delta^2 n^{1/\delta}$	$1/\delta$	$ ilde{\Omega}(n)$	Randomized
This Mente	2/2	1	0()	Developmined
This Work	3/2	1	$\Omega(mn)$	Randomized
This Work	1	$1/\delta$	$\Omega(mn^{\delta})$	Randomized

Our Results

Our Results	Approximation	Passes	Space	Туре	
Algorithm	$O(ho/\delta)$	$O(1/\delta)$	$\tilde{O}(mn^{\delta})$	Randomized	
Geometric Algorithm	$O(ho/\delta)$	$O(1/\delta)$	$\tilde{O}(n)$	Randomized	
Lower-bound	3/2	1	$\Omega(mn)$	Randomized	
Lower-bound	1	$1/\delta$	$\Omega(mn^{\delta})$	Randomized	
Sparse Case Lower-bound	1	$1/\delta$	$\Omega(ms)$	Randomized	

s = sparsity of the sets($s \le n^{\delta}$)

Outline of the Algorithm

Approach: "dimensionality reduction"

- Covers all but $1/n^{\delta}$ fraction of elements
- Uses $O(\rho k)$ sets (k = min cover size)
- Uses $\tilde{O}(mn^{\delta})$ space
- Two passes

Repeat $O(1/\delta)$ times:

- Covers all the elements
- $O(\rho/\delta)$ approximation
- Uses $\tilde{O}(mn^{\delta})$ space
- $O(1/\delta)$ passes

Dimensionality reduction:

- Covers all but $1/n^{\delta}$ fraction of elements
- Uses $O(\rho k)$ sets
- Uses $ilde{O}(mn^{\delta})$ space
- Two passes

- Suppose we know k = min cover size
- Select a set R of $kn^{\delta} \log m \log n$ random elements from U
- Pass 1:
 - For each set S_i , select S_i if it covers $\Omega(|R|/k)$ uncovered elements of R
 - Otherwise, store projection of *S_i* over *R*
- Compute a ρ -approximate set cover I' over R
- Pass 2:
 - Update the set of uncovered elements
- Report sets found in Pass 1

Dimensionality reduction:

- Covers all but $1/n^{\delta}$ fraction of elements
- Uses $O(\rho k)$ sets
- Uses $ilde{O}(mn^{\delta})$ space
- Two passes

- Suppose we know *k* = min cover size
- Select a set R of $kn^{\delta} \log m \log n$ random elements from U
- Pass 1:
 - For each set S_i , select S_i if it covers $\Omega(|R|/k)$ uncovered elements of R
 - Otherwise, store projection of S_i over R
- Compute a ρ -approximate set cover I' over R
- Pass 2:
 - Update the set of uncovered elements
- Report sets found in Pass 1

Dimensionality reduction: •:

- Covers all but $1/n^{\delta}$ fraction of elements Uses O(
 ho k) sets Uses $ilde{O}(mn^{\delta})$ space
- Two passes

- Suppose we know *k* = min cover size
- Select a set R of $kn^{\delta} \log m \log n$ random elements from U
- Pass 1:
 - For each set S_i , select S_i if it covers $\Omega(|R|/k)$ uncovered elements of R
 - Otherwise, store projection of S_i over R
- Compute a ρ -approximate set cover I' over R
- Pass 2:
 - Update the set of uncovered elements
- Report sets found in Pass 1

 ρk sets

k sets

Dimensionality reduction:

- Covers all but $1/n^{\delta}$ fraction of elements Uses $O(\rho k)$ sets Uses $\tilde{O}(mn^{\delta})$ space
- Two passes

• Suppose we know *k* = min cover size

Increases space by log n

- Select a set R of $kn^{\delta} \log m \log n$ random elements from U
- Pass 1:
 - For each set S_i , select S_i if it covers $\Omega(|R|/k)$ uncovered elements of R
 - Otherwise, store projection of S_i over R
- Compute a ρ -approximate set cover I' over R
- Pass 2:
 - Update the set of uncovered elements
- Report sets found in Pass 1

 $m\frac{|R|}{k} \qquad k \le n \text{ sets} : n \log m$ $= m \cdot kn^{\delta} \log m \log n/k$ $= \tilde{O}(mn^{\delta})$

Dimensionality reduction:

Covers all but $1/n^{\delta}$ fraction of elements Uses $O(\rho k)$ sets Uses $\tilde{O}(mn^{\delta})$ space Two passes

- Suppose we know *k* = min cover size
- Select a set R of $kn^{\delta} \log m \log n$ random elements from U
- Pass 1:
 - For each set S_i , select S_i if it covers $\Omega(|R|/k)$ uncovered elements of R
 - Otherwise, store projection of S_i over R
- Compute a ρ -approximate set cover I' over R
- Pass 2:
 - Update the set of uncovered elements
- Report sets found in Pass 1

Relative (p, ϵ) -approximation

- Let *U* be a set of elements
- Let $\mathcal{H} \subseteq 2^V$ be a collection of subsets of the ground set U
- Then a subset Z is a relative (p,ϵ) -approximation for (U,\mathcal{H}) if for each $S\in\mathcal{H}$

•
$$(1 - \epsilon) \frac{|S|}{|U|} \le \frac{|S \cap Z|}{|Z|} \le (1 + \epsilon) \frac{|S|}{|U|}$$
 if $|S| \ge p|U|$
• $\frac{|S|}{|U|} - \epsilon p \le \frac{|S \cap Z|}{|Z|} \le \frac{|S|}{|U|} + \epsilon p$ if $|S| < p|U|$ $(1 \pm \epsilon)$ -multiplicative estimator
 (ϵp) -additive estimator

[Har-Peled and Sharir] For any p, ϵ and q, a random sample of U of size $O(\frac{1}{\epsilon^2 p}(\log |\mathcal{H}| \log \frac{1}{p} + \log \frac{1}{q}))$ is a relative (p, ϵ) -approximation of (U, \mathcal{H}) with probability at least (1 - q).

Dimensionality reduction:

Covers all but $1/n^{\delta}$ fraction of elements Uses ρk sets Uses $\tilde{O}(mn^{\delta})$ space Two passes

- Suppose we know *k* = min cover size
- Select a set R of $kn^{\delta} \log m \log n$ random elements from U
- Pass 1:
 - For each set S_i , select S_i if it covers $\Omega(|R|/k)$ uncovered elements of R
 - Otherwise, store projection of S_i over R
- Compute a ρ -approximate set cover I' over R
- Pass 2:
 - Update the set of uncovered elements
- Report sets found in Pass 1

Algorithm

- Repeat $1/\delta$ times
 - Dimensionality Reduction component
 - Covers all but $1/n^{\delta}$ fraction of elements
 - Uses ρk sets
 - Uses $\tilde{O}(mn^{\delta})$ space
 - Two passes

Our Results	Approximation	Passes	Space	Туре	
Algorithm	$O(ho/\delta)$	$O(1/\delta)$	$\tilde{O}(mn^{\delta})$	Randomized	
Geometric Algorithm	$O(ho/\delta)$	$O(1/\delta)$	$\tilde{O}(n)$	Randomized	
Lower-bound	3/2	1	$\Omega(mn)$	Randomized	
Lower-bound	1	$1/\delta$	$\Omega(mn^{\delta})$	Randomized	
Sparse Case Lower-bound	1	$1/\delta$	$\Omega(ms)$	Randomized	

Lower bound: single pass

- Have seen that O(1) passes can reduce space requirements
- What can(not) be done in one pass?
- We show that distinguishing between k = 2 and k = 3 requires $\tilde{\Omega}$ (*mn*) space

Many vs One Set-Disjointness

- Two sets cover U iff their complements are disjoint
- Consider the following one-way communication complexity problem:
 - Alice: sets S_1, \ldots, S_m
 - Bob: set S_B
 - Question: is S_B disjoint from one of S_i 's ?

[Our Result] The randomized one way communication complexity of Many vs. One Set-disjointness is $\Omega(mn)$ if error probability is 1/poly(m).

Many vs One Set-Disjointness

[Our Result] The randomized one way communication complexity of Many vs. One Set-disjointness is $\Omega(mn)$ if error probability is 1/poly(m).

- Alice's sets are selected uniformly at random
- There exist poly(m) sets S_B such that if Bob learns answers to all of them, he can recover all S_i 's with high probability

 Bob can recover mn random bits from o(mn) bits of communication -> contradiction

Recovering Alice's Collection

- Recovery procedure
 - Suppose that Bob has a set S_B that is disjoint from *exactly* one S_i (we do not know which one)
 - Call it a "good seed" for S_i
 - Then Bob queries all extensions $S_B \cup \{e\}$ to recover S_i

- Bob's queries:
 - A random "seed" of size clog m is disjoint from exactly one S_i w.p. m^{-O(c)}
 - Try $m^{O(c)}$ times
- Recover all S_i

Result

[Our Result] The randomized one way communication complexity of Many vs. One Set-disjointness is $\Omega(mn)$ if error probability is 1/poly(m).

Our Results	Approximation	Passes	Space	Туре	
Algorithm	$O(ho/\delta)$	$O(1/\delta)$	$\tilde{O}(mn^{\delta})$	Randomized	
Geometric Algorithm	$O(ho/\delta)$	$O(1/\delta)$	$\tilde{O}(n)$	Randomized	
Lower-bound	3/2	1	$\Omega(mn)$	Randomized	
Lower-bound	1	$1/\delta$	$\Omega(mn^{\delta})$	Randomized	-
Sparse Case Lower-bound	1	$1/\delta$	$\Omega(ms)$	Randomized	

Lower bound: Multipass

- Reduction from Intersection Set Chasing [Guruswami, Onak 13]
- Very "fragile", works only for the exact problem

[Our Result] Any $1/\delta$ pass *exact* algorithm of Set Cover requires $\widetilde{\Omega}(mn^{\delta})$ space

In s-Sparse Set Cover, each input set is of size at most s.

[Our Result] Any $1/\delta$ pass *exact* algorithm of s-Sparse Set Cover requires $\widetilde{\Omega}(ms)$ space (for $s \le n^{\delta}$)

- p players,
- Each knows an n * n bipartite directed graph

Set Chasing (5,3)

 $f_i:[n] \to 2^{[n]}$

 $f_i:[n] \to 2^{[n]}$

$$f_i: [n] \to 2^{[n]}$$
$$\overline{f_i}(S) = \bigcup_{a \in S} f_i(a)$$

$$f_i: [n] \to 2^{[n]}$$

$$\overline{f_i}(S) = \bigcup_{a \in S} f_i(a)$$

• p players,

 r rounds; in each round starting from P₁ a player speaks (to all)

Goal: P_p computes $\overline{f_1}\left(\overline{f_2}\left(\cdots\left(\overline{f_p}(s)\right)\cdots\right)\right)$ at the end of the last round.

Interesting instance: r = p - 1 **CC**(SC(n, p)) = $n^{1+\Omega(1/p)}$ [Feigenbaum et al. 08]

Intersection Set Chasing(*n*, *p*) Problem

• Two instances of Set Chasing **Goal:** Whether $\overline{f_1}\left(\overline{f_2}\left(\cdots\left(\overline{f_p}(s)\right)\cdots\right)\right)$ and $\overline{f_{p+1}}\left(\overline{f_{p+2}}\left(\cdots\left(\overline{f_{2p}}(s)\right)\cdots\right)\right)$ intersect?

Intersection Set Chasing(*n*, *p*) Problem

• Two instances of Set Chasing **Goal:** Whether $\overline{f_1}\left(\overline{f_2}\left(\cdots\left(\overline{f_p}(s)\right)\cdots\right)\right)$ and $\overline{f_{p+1}}\left(\overline{f_{p+2}}\left(\cdots\left(\overline{f_{2p}}(s)\right)\cdots\right)\right)$ intersect?

Intersection Set Chasing(*n*, *p*) Problem

[Guruswami and Onak] Any randomized protocol that solves Intersection Set Chasing(n, p) with error probability less than 1/10, requires $\widetilde{\Omega}(\frac{n^{1+1/(2p)}}{p^{16}})$ bits of communication where n is sufficiently large and $p \leq \frac{\log n}{\log \log n}$.

Function set

Function set

Function set

Function set

Function set

Border sets

Enforce to pick one of the function sets.

- Size of Set Cover in such an instance is at least (2p + 1)n + 1
- There exists an intersection between the corresponding nodes iff size of the set cover is exactly (2p + 1)n + 1

- Size of Set Cover in such an instance is at least (2p + 1)n + 1
- There exists an intersection between the corresponding nodes iff size of the set cover is exactly (2p + 1)n + 1

- Size of Set Cover in such an instance is at least (2p + 1)n + 1
- There exists an intersection between the corresponding nodes iff size of the set cover is exactly (2p + 1)n + 1

- Size of Set Cover in such an instance is at least (2p + 1)n + 1
- There exists an intersection between the corresponding nodes iff size of the set cover is exactly (2p + 1)n + 1

- Size of Set Cover in such an instance is at least (2p + 1)n + 1
- There exists an intersection between the corresponding nodes iff size of the set cover is exactly (2p + 1)n + 1

- $M_{SC} = O(np)$, $N_{SC} = O(np)$, $1/\delta = O(p)$
- Lower bound of $\widetilde{\Omega}(n^{1+1/2p}) = \widetilde{\Omega}(M_{SC}N_{SC}^{O(\delta)})$

Result

Any Streaming Algorithm that solves the set cover problem with constant probability of error in $\frac{1}{2\delta} - 1$ passes , requires $\widetilde{\Omega}(mn^{\delta})$ memory space where $\delta \geq \frac{\log \log n}{\log n}$.

Our Results	Approximation	Passes	Space	Туре	
Algorithm	$O(ho/\delta)$	$O(1/\delta)$	$\tilde{O}(mn^{\delta})$	Randomized	
Geometric Algorithm	$O(ho/\delta)$	$O(1/\delta)$	$\tilde{O}(n)$	Randomized	
Lower-bound	3/2	1	$\Omega(mn)$	Randomized	
Lower-bound	1	$1/\delta$	$\Omega(mn^{\delta})$	Randomized	
Sparse Case Lower-bound	1	$1/\delta$	$\Omega(ms)$	Randomized	

Future Directions

Our Results	Approximation	Passes	Space	Туре
Algorithm	$O(ho/\delta)$	$O(1/\delta)$	$\tilde{O}(mn^{\delta})$	Randomized
Geometric Algorithm	$O(ho/\delta)$	$O(1/\delta)$	$\tilde{O}(n)$	Randomized
Lower-bound	3/2	1	$\Omega(mn)$	Randomized
Lower-bound	1	$1/\delta$	$\Omega(mn^{\delta})$	Randomized
Sparse Case Lower-bound	1	$1/\delta$	$\Omega(ms)$	Randomized

- Weighted Set Cover Problem
- Improving lower bound for single pass protocols
- Improving Lower bound for multiple pass protocols: for approximate algorithms
- Geometric set cover in higher dimensions

Thank You!

Geometric Set Cover

- Elements are points in R^2 .
- Sets are discs, axis-parallel rectangles and fat triangles (shapes).
- Main Observation: Transform the sets $\mathcal F$ to canonical representation $\mathcal F'$
 - 1. Each set in \mathcal{F}' is contained by a set in \mathcal{F} .
 - 2. Each set in \mathcal{F} is union of at most c sets in \mathcal{F}' .
 - 3. The size of \mathcal{F}' is small, given that each of them has few points in them

Geometric Set Cover

- Elements are points in R^2 .
- Sets are discs, axis-parallel rectangles and fat triangles (shapes).
- Main Observation: Transform the sets \mathcal{F} to canonical representation \mathcal{F}'
 - 1. Each set in \mathcal{F}' is contained by a set in \mathcal{F} .
 - 2. Each set in \mathcal{F} is union of at most c sets in \mathcal{F}' .
 - 3. The size of \mathcal{F}' is small, given that each of them has few points in them

