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Set Cover Problem

• Input: a collection 𝒮𝒮 of sets S1...Sm that covers 𝑈𝑈 = {1 …𝑛𝑛}
• i.e., 𝑆𝑆1 ∪ 𝑆𝑆2 ∪⋯∪ 𝑆𝑆𝑚𝑚 = 𝑈𝑈

• Output: a subset ℐ of 𝒮𝒮 such that:
• ℐ covers 𝑈𝑈
• |ℐ| is minimized

• Classic optimization problem:
• NP-hard
• Greedy (ln𝑛𝑛)-approximation algorithm
• Can’t do better unless P=NP [Feige 98][Alon, Moshkovitz, 

Safra 06][Dinur, Steurer 14]
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Streaming Set Cover [SG09]

• Model
• Sequential access to 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑚𝑚
• One (or few) passes, sublinear (i.e., 𝑜𝑜(𝑚𝑚𝑛𝑛)) storage
• (Hopefully) decent approximation factor

• Why?
• A classic optimization problem
• Application in “Big Data”: Clustering, Topic Coverage
• One of few NP-hard problems studied in streaming

• Other examples: Clustering, Max-Cut, Sub-Modular Optimization, 
FPT
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Previous and Our Results: Algorithms
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Algorithms Approximation Passes Space Type

Greedy Alg
𝑂𝑂(log𝑛𝑛)
𝑂𝑂(log𝑛𝑛)

1
𝑛𝑛

𝑂𝑂(𝑚𝑚𝑛𝑛)
𝑂𝑂(𝑛𝑛)

Deterministic
Deterministic

[Getoor and Saha 09] 𝑂𝑂(log𝑛𝑛) 𝑂𝑂(log𝑛𝑛) 𝑂𝑂(𝑛𝑛 log𝑛𝑛) Deterministic
[Emek and Rósen 14] 𝑂𝑂( 𝑛𝑛) 1 �𝑂𝑂(𝑛𝑛) Deterministic

[Demaine, Indyk, M, Vakilian 14] 𝑂𝑂(𝜌𝜌4 ⁄1 𝛿𝛿) 𝑂𝑂(4 ⁄1 𝛿𝛿) �𝑂𝑂(𝑚𝑚𝑛𝑛𝛿𝛿) Randomized
[Chakrabarti, Wirth 16] 𝑂𝑂(𝑛𝑛𝛿𝛿/𝛿𝛿) ⁄1 𝛿𝛿 − 1 �𝑂𝑂(𝑛𝑛) Deterministic

𝑛𝑛 = number of elements
𝑚𝑚 = number of sets.

𝜌𝜌 = approximation guarantee 
for offline Set Cover

This Work 𝑂𝑂( ⁄𝜌𝜌 𝛿𝛿) 𝑂𝑂( ⁄1 𝛿𝛿) �𝑂𝑂(𝑚𝑚𝑛𝑛𝛿𝛿) Randomized



Previous and Our Results: Lower-bounds
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Lower bounds Approximation Passes Space Type
[Nisan 02] (log𝑛𝑛)/2 Any 𝛺𝛺(𝑚𝑚) Randomized

[Emek, Rosen 14] √𝑛𝑛 1 𝛺𝛺(𝑛𝑛) Randomized
[Demaine, Indyk, M, Vakilian 14] Constant Any 𝛺𝛺(𝑚𝑚𝑛𝑛) Deterministic

[Chakrabarti, Wirth 14] 𝛿𝛿2𝑛𝑛1/𝛿𝛿 1/𝛿𝛿 �𝛺𝛺(𝑛𝑛) Randomized

[Guha and McGregor] A 𝑝𝑝-pass  streaming algorithm of problem P using 𝑠𝑠 bits of 
storage yields a (2𝑝𝑝 − 1) rounds protocol with (2𝑝𝑝 − 1)𝑠𝑠 bit of communication for 
P in 2-party communication complexity model.

This Work 3/2 1 𝛺𝛺(𝑚𝑚𝑛𝑛) Randomized
This Work 1 1/𝛿𝛿 𝛺𝛺(𝑚𝑚𝑛𝑛𝛿𝛿) Randomized



Our Results

6

Our Results Approximation Passes Space Type
Algorithm 𝑂𝑂( ⁄𝜌𝜌 𝛿𝛿) 𝑂𝑂( ⁄1 𝛿𝛿) �𝑂𝑂(𝑚𝑚𝑛𝑛𝛿𝛿) Randomized

Geometric Algorithm 𝑂𝑂( ⁄𝜌𝜌 𝛿𝛿) 𝑂𝑂( ⁄1 𝛿𝛿) �𝑂𝑂(𝑛𝑛) Randomized
Lower-bound 3/2 1 𝛺𝛺(𝑚𝑚𝑛𝑛) Randomized
Lower-bound 1 1/𝛿𝛿 𝛺𝛺(𝑚𝑚𝑛𝑛𝛿𝛿) Randomized

Sparse Case Lower-bound 1 1/𝛿𝛿 𝛺𝛺(𝑚𝑚𝑠𝑠) Randomized

𝑠𝑠 = sparsity of the sets
(𝑠𝑠 ≤ 𝑛𝑛𝛿𝛿)



Outline of the Algorithm

Approach: “dimensionality reduction”
• Covers all but 1/𝑛𝑛𝛿𝛿 fraction of elements 
• Uses O(𝜌𝜌𝑘𝑘) sets (𝑘𝑘 = min cover size)  
• Uses �𝑂𝑂(𝑚𝑚𝑛𝑛𝛿𝛿) space
• Two passes

Repeat 𝑂𝑂(1/𝛿𝛿) times:
• Covers all the elements
• 𝑂𝑂(𝜌𝜌/𝛿𝛿) approximation
• Uses �𝑂𝑂(𝑚𝑚𝑛𝑛𝛿𝛿) space
• 𝑂𝑂(1/𝛿𝛿) passes
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Dimensionality reduction:

• Suppose we know 𝑘𝑘 = min cover size 
• Select a set 𝑅𝑅 of   𝑘𝑘𝑛𝑛𝛿𝛿 log𝑚𝑚 log𝑛𝑛 random elements from 𝑈𝑈
• Pass 1: 

• For each set 𝑆𝑆𝑖𝑖 , select 𝑆𝑆𝑖𝑖 if it covers Ω(|𝑅𝑅|/𝑘𝑘) uncovered elements of 𝑅𝑅
• Otherwise, store projection of 𝑆𝑆𝑖𝑖 over 𝑅𝑅

• Compute a 𝜌𝜌-approximate set cover 𝐼𝐼𝐼 over 𝑅𝑅
• Pass 2:

• Update the set of uncovered elements
• Report sets found in Pass 1
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• Covers all but 1/𝑛𝑛𝛿𝛿 fraction of elements
• Uses 𝑂𝑂(𝜌𝜌𝑘𝑘) sets
• Uses �𝑂𝑂(𝑚𝑚𝑛𝑛𝛿𝛿) space
• Two passes
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Increases space by log𝑛𝑛

𝑘𝑘 ≤ 𝑛𝑛 sets ∶ 𝑛𝑛 log𝑚𝑚
𝑚𝑚 𝑅𝑅

𝑘𝑘
= 𝑚𝑚 ⋅ 𝑘𝑘𝑛𝑛𝛿𝛿 log𝑚𝑚 log𝑛𝑛/𝑘𝑘
= �𝑂𝑂(𝑚𝑚𝑛𝑛𝛿𝛿)
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Relative (𝑝𝑝, 𝜖𝜖)-approximation

• Let 𝑈𝑈 be a set of elements
• Let ℋ ⊆ 2𝑉𝑉 be a collection of subsets of the ground set 𝑈𝑈
Then a subset 𝑍𝑍 is a relative (𝑝𝑝, 𝜖𝜖)-approximation for (𝑈𝑈,ℋ) if 
for each 𝑆𝑆 ∈ ℋ

• 1 − 𝜖𝜖 𝑆𝑆
|𝑈𝑈|

≤ 𝑆𝑆∩𝑍𝑍
𝑍𝑍

≤ 1 + 𝜖𝜖 𝑆𝑆
|𝑈𝑈|

if 𝑆𝑆 ≥ 𝑝𝑝|𝑈𝑈|

• 𝑆𝑆
|𝑈𝑈|
− 𝜖𝜖𝑝𝑝 ≤ 𝑆𝑆∩𝑍𝑍

𝑍𝑍
≤ 𝑆𝑆

𝑈𝑈
+ 𝜖𝜖𝑝𝑝 if 𝑆𝑆 < 𝑝𝑝|𝑈𝑈|
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(𝟏𝟏 ± 𝝐𝝐)-multiplicative estimator

[Har-Peled and Sharir] For any 𝑝𝑝, 𝜖𝜖 and 𝑞𝑞, a random sample of 𝑈𝑈 of size 
𝑂𝑂( 1

𝜖𝜖2𝑝𝑝
(log ℋ log 1

𝑝𝑝
+ log 1

𝑞𝑞
)) is a relative (𝑝𝑝, 𝜖𝜖)-approximation of (𝑈𝑈,ℋ)

with probability at least 1 − 𝑞𝑞 .

(𝝐𝝐𝝐𝝐)-additive estimator



Dimensionality reduction:

• Suppose we know 𝑘𝑘 = min cover size 
• Select a set 𝑅𝑅 of   𝒌𝒌𝒌𝒌𝜹𝜹 𝐥𝐥𝐥𝐥𝐥𝐥𝒎𝒎 𝐥𝐥𝐥𝐥𝐥𝐥𝒌𝒌 random elements from 𝑈𝑈
• Pass 1: 

• For each set 𝑆𝑆𝑖𝑖 , select 𝑆𝑆𝑖𝑖 if it covers Ω(|𝑅𝑅|/𝑘𝑘) uncovered elements of 𝑅𝑅
• Otherwise, store projection of 𝑆𝑆𝑖𝑖 over 𝑅𝑅

• Compute a 𝜌𝜌-approximate set cover 𝐼𝐼𝐼 over 𝑅𝑅
• Pass 2:

• Update the set of uncovered elements
• Report sets found in Pass 1
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• Covers all but 1/𝑛𝑛𝛿𝛿 fraction of elements
• Uses 𝜌𝜌𝑘𝑘 sets
• Uses �𝑂𝑂(𝑚𝑚𝑛𝑛𝛿𝛿) space
• Two passes

Relative (𝟏𝟏/𝒌𝒌𝜹𝜹,𝟏𝟏/𝟐𝟐)-approximation



Algorithm

• Repeat 1/𝛿𝛿 times 
• Dimensionality Reduction component
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• Uses 𝜌𝜌𝑘𝑘 sets
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Our Results Approximation Passes Space Type
Algorithm 𝑂𝑂( ⁄𝜌𝜌 𝛿𝛿) 𝑂𝑂( ⁄1 𝛿𝛿) �𝑂𝑂(𝑚𝑚𝑛𝑛𝛿𝛿) Randomized

Geometric Algorithm 𝑂𝑂( ⁄𝜌𝜌 𝛿𝛿) 𝑂𝑂( ⁄1 𝛿𝛿) �𝑂𝑂(𝑛𝑛) Randomized
Lower-bound 3/2 1 𝛺𝛺(𝑚𝑚𝑛𝑛) Randomized
Lower-bound 1 1/𝛿𝛿 𝛺𝛺(𝑚𝑚𝑛𝑛𝛿𝛿) Randomized

Sparse Case Lower-bound 1 1/𝛿𝛿 𝛺𝛺(𝑚𝑚𝑠𝑠) Randomized



Lower bound: single pass

• Have seen that 𝑂𝑂(1) passes can reduce space 
requirements

• What can(not) be done in one pass?

• We show that distinguishing between 𝑘𝑘 = 2 and 𝑘𝑘 = 3
requires �Ω (𝑚𝑚𝑛𝑛) space
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Many vs One Set-Disjointness

• Two sets cover 𝑈𝑈 iff their complements are disjoint

• Consider the following one-way communication 
complexity problem:

• Alice: sets 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚
• Bob: set 𝑆𝑆𝐵𝐵
• Question: is 𝑆𝑆𝐵𝐵 disjoint from one of 𝑆𝑆𝑖𝑖’s ?
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[Our Result] The randomized one way communication complexity of Many 
vs. One Set-disjointness is Ω(𝑚𝑚𝑛𝑛) if error probability is 1/poly(m).



Many vs One Set-Disjointness

• Alice’s sets are selected uniformly at random
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[Our Result] The randomized one way communication complexity of Many 
vs. One Set-disjointness is Ω(𝑚𝑚𝑛𝑛) if error probability is 1/poly(m).

𝟎𝟎𝟏𝟏𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏⋯𝟏𝟏𝟏𝟏𝟎𝟎
𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏⋯𝟎𝟎𝟏𝟏𝟎𝟎
𝟎𝟎𝟏𝟏𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏⋯𝟏𝟏𝟎𝟎𝟎𝟎

⋮
𝟎𝟎𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏𝟏𝟏𝟏𝟏⋯𝟏𝟏𝟎𝟎𝟎𝟎

s

• There exist poly(m) sets 𝑆𝑆𝐵𝐵 such that if Bob 
learns answers to all of them, he can recover 
all 𝑆𝑆𝑖𝑖’s with high probability

• Bob can recover 𝑚𝑚𝑛𝑛 random bits from o(𝑚𝑚𝑛𝑛)
bits of communication -> contradiction

𝑚𝑚

𝑛𝑛



Recovering Alice’s Collection

• Bob’s queries: 
• A random “seed” of size 𝑐𝑐𝑐𝑐𝑐𝑚𝑚 is disjoint 

from exactly one 𝑆𝑆𝑖𝑖 w.p. 𝑚𝑚−𝑂𝑂(𝑐𝑐)

• Try 𝑚𝑚𝑂𝑂(𝑐𝑐) times

19

𝟎𝟎𝟏𝟏𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏⋯𝟏𝟏𝟏𝟏𝟎𝟎
𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏⋯𝟎𝟎𝟏𝟏𝟎𝟎
𝟎𝟎𝟏𝟏𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏⋯𝟏𝟏𝟎𝟎𝟎𝟎

⋮
𝟎𝟎𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏𝟏𝟏𝟏𝟏⋯𝟏𝟏𝟎𝟎𝟎𝟎

𝟎𝟎𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝟏𝟏𝟎𝟎⋯𝟎𝟎𝟎𝟎𝟎𝟎

s

𝟏𝟏𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝟏𝟏𝟎𝟎⋯𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟏𝟏𝟏𝟏𝟎𝟎𝟎𝟎𝟏𝟏𝟎𝟎⋯𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎⋯𝟎𝟎𝟎𝟎𝟎𝟎

• Recover all 𝑆𝑆𝑖𝑖

𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏⋯𝟎𝟎𝟏𝟏𝟎𝟎

• Recovery procedure
• Suppose that Bob has a set 𝑆𝑆𝐵𝐵 that is disjoint from exactly one 𝑆𝑆𝑖𝑖

(we do not know which one)
• Call it a “good seed” for 𝑆𝑆𝑖𝑖

• Then Bob queries all extensions 𝑆𝑆𝐵𝐵 ∪ {e}
to recover 𝑆𝑆𝑖𝑖



Result
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Geometric Algorithm 𝑂𝑂( ⁄𝜌𝜌 𝛿𝛿) 𝑂𝑂( ⁄1 𝛿𝛿) �𝑂𝑂(𝑛𝑛) Randomized
Lower-bound 3/2 1 𝛺𝛺(𝑚𝑚𝑛𝑛) Randomized
Lower-bound 1 1/𝛿𝛿 𝛺𝛺(𝑚𝑚𝑛𝑛𝛿𝛿) Randomized

Sparse Case Lower-bound 1 1/𝛿𝛿 𝛺𝛺(𝑚𝑚𝑠𝑠) Randomized

[Our Result] The randomized one way communication complexity of Many 
vs. One Set-disjointness is Ω(𝑚𝑚𝑛𝑛) if error probability is 1/poly(m).



Lower bound: Multipass

• Reduction from Intersection Set Chasing [Guruswami, Onak 13]
• Very “fragile”, works only for the exact problem
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[Our Result] Any 1/𝛿𝛿 pass exact algorithm of Set Cover requires �Ω 𝑚𝑚𝑛𝑛𝛿𝛿 space

[Our Result] Any 1/𝛿𝛿 pass exact algorithm of s-Sparse Set Cover requires �Ω 𝑚𝑚𝑠𝑠
space (for 𝑠𝑠 ≤ 𝑛𝑛𝛿𝛿)

In s-Sparse Set Cover, each input set is of size at most s.



Set Chasing(𝑛𝑛,𝑝𝑝) Problem
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𝑷𝑷𝟐𝟐 𝑷𝑷𝟏𝟏𝑷𝑷𝟑𝟑

• 𝑝𝑝 players, 
• Each knows an 𝑛𝑛 ∗ 𝑛𝑛 bipartite 

directed graph

Set Chasing (5,3)



Set Chasing(𝑛𝑛,𝑝𝑝) Problem
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𝑓𝑓𝑖𝑖: 𝑛𝑛 → 2[𝑛𝑛]

𝑷𝑷𝒊𝒊



Set Chasing(𝑛𝑛,𝑝𝑝) Problem
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𝑓𝑓𝑖𝑖: 𝑛𝑛 → 2[𝑛𝑛]

𝑷𝑷𝒊𝒊



Set Chasing(𝑛𝑛,𝑝𝑝) Problem

25

𝑓𝑓𝑖𝑖: 𝑛𝑛 → 2[𝑛𝑛]

�𝑓𝑓𝑖𝑖 𝑆𝑆 = ⋃𝑎𝑎∈𝑆𝑆 𝑓𝑓𝑖𝑖(𝑎𝑎)

𝑷𝑷𝒊𝒊



Set Chasing(𝑛𝑛,𝑝𝑝) Problem
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𝑓𝑓𝑖𝑖: 𝑛𝑛 → 2[𝑛𝑛]

�𝑓𝑓𝑖𝑖 𝑆𝑆 = ⋃𝑎𝑎∈𝑆𝑆 𝑓𝑓𝑖𝑖(𝑎𝑎)

S

𝑷𝑷𝒊𝒊



Set Chasing(𝑛𝑛,𝑝𝑝) Problem
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s
𝑷𝑷𝟐𝟐 𝑷𝑷𝟏𝟏𝑷𝑷𝟑𝟑



Set Chasing(𝑛𝑛,𝑝𝑝) Problem

28

• 𝑝𝑝 players, 
• 𝑟𝑟 rounds; in each round starting from 𝑃𝑃1

a player speaks (to all)
s

Goal: 𝑃𝑃𝑝𝑝 computes �𝑓𝑓1 �𝑓𝑓2 ⋯ �𝑓𝑓𝑝𝑝 𝑠𝑠 ⋯
at the end of the last round.

Interesting instance: 𝑟𝑟 = 𝑝𝑝 − 1
CC(SC(𝑛𝑛, 𝑝𝑝)) = 𝑛𝑛1+Ω(1/𝑝𝑝) [Feigenbaum et al. 
08]

𝑷𝑷𝟐𝟐 𝑷𝑷𝟏𝟏𝑷𝑷𝟑𝟑



Intersection Set Chasing(𝑛𝑛,𝑝𝑝) 
Problem
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• Two instances of Set Chasing

Goal: Whether �𝑓𝑓1 �𝑓𝑓2 ⋯ �𝑓𝑓𝑝𝑝 𝑠𝑠 ⋯ and 𝑓𝑓𝑝𝑝+1 𝑓𝑓𝑝𝑝+2 ⋯ 𝑓𝑓2𝑝𝑝 𝑠𝑠 ⋯ intersect? 

𝑷𝑷𝟐𝟐 𝑷𝑷𝟏𝟏𝑷𝑷𝟑𝟑 𝑷𝑷𝟓𝟓 𝑷𝑷𝟔𝟔𝑷𝑷𝟒𝟒



Intersection Set Chasing(𝑛𝑛,𝑝𝑝) 
Problem
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• Two instances of Set Chasing

Goal: Whether �𝑓𝑓1 �𝑓𝑓2 ⋯ �𝑓𝑓𝑝𝑝 𝑠𝑠 ⋯ and 𝑓𝑓𝑝𝑝+1 𝑓𝑓𝑝𝑝+2 ⋯ 𝑓𝑓2𝑝𝑝 𝑠𝑠 ⋯ intersect? 

𝑷𝑷𝟐𝟐 𝑷𝑷𝟏𝟏𝑷𝑷𝟑𝟑 𝑷𝑷𝟓𝟓 𝑷𝑷𝟔𝟔𝑷𝑷𝟒𝟒



Intersection Set Chasing(𝑛𝑛,𝑝𝑝) 
Problem

31

[Guruswami and Onak] Any randomized protocol that solves Intersection Set 

Chasing(𝑛𝑛, 𝑝𝑝) with error probability less than 1/10, requires �Ω(𝑛𝑛
1+1/(2𝑝𝑝)

𝑝𝑝16
) bits 

of communication where n is sufficiently large and 𝑝𝑝 ≤ log 𝑛𝑛
log log 𝑛𝑛

.

𝑷𝑷𝟐𝟐 𝑷𝑷𝟏𝟏𝑷𝑷𝟑𝟑 𝑷𝑷𝟓𝟓 𝑷𝑷𝟔𝟔𝑷𝑷𝟒𝟒



Reduction
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Reduction
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Reduction
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Function set



Reduction
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Function set



Reduction
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Function set



Reduction
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Function set



Reduction
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Function set



Reduction
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Border sets



Reduction
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Reduction
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Enforce to pick one of the function sets.



Reduction
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Reduction
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• Size of Set Cover in such an instance is at least  2𝑝𝑝 + 1 𝑛𝑛 + 1
• There exists an intersection between the corresponding nodes iff

size of the set cover is exactly 2𝑝𝑝 + 1 𝑛𝑛 + 1
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• There exists an intersection between the corresponding nodes iff
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• Size of Set Cover in such an instance is at least  2𝑝𝑝 + 1 𝑛𝑛 + 1
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Reduction
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• Size of Set Cover in such an instance is at least  2𝑝𝑝 + 1 𝑛𝑛 + 1
• There exists an intersection between the corresponding nodes iff

size of the set cover is exactly 2𝑝𝑝 + 1 𝑛𝑛 + 1



Reduction
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• Size of Set Cover in such an instance is at least  2𝑝𝑝 + 1 𝑛𝑛 + 1
• There exists an intersection between the corresponding nodes iff

size of the set cover is exactly 2𝑝𝑝 + 1 𝑛𝑛 + 1



Reduction
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• 𝑀𝑀𝑆𝑆𝑆𝑆 = 𝑂𝑂 𝑛𝑛𝑝𝑝 , 𝑁𝑁𝑆𝑆𝑆𝑆 = 𝑂𝑂 𝑛𝑛𝑝𝑝 , 1/𝛿𝛿 = 𝑂𝑂(𝑝𝑝)

• Lower bound of �Ω(𝑛𝑛1+1/2𝑝𝑝) = �Ω(𝑀𝑀𝑆𝑆𝑆𝑆𝑁𝑁𝑆𝑆𝑆𝑆
𝑂𝑂(𝛿𝛿))



Result
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Any Streaming Algorithm that solves the set cover problem with constant 
probability of error in 1

2𝛿𝛿
− 1 passes , requires �Ω 𝑚𝑚𝑛𝑛𝛿𝛿 memory space where 

𝛿𝛿 ≥ log log 𝑛𝑛
log 𝑛𝑛

.

Our Results Approximation Passes Space Type
Algorithm 𝑂𝑂( ⁄𝜌𝜌 𝛿𝛿) 𝑂𝑂( ⁄1 𝛿𝛿) �𝑂𝑂(𝑚𝑚𝑛𝑛𝛿𝛿) Randomized

Geometric Algorithm 𝑂𝑂( ⁄𝜌𝜌 𝛿𝛿) 𝑂𝑂( ⁄1 𝛿𝛿) �𝑂𝑂(𝑛𝑛) Randomized
Lower-bound 3/2 1 𝛺𝛺(𝑚𝑚𝑛𝑛) Randomized
Lower-bound 1 1/𝛿𝛿 𝛺𝛺(𝑚𝑚𝑛𝑛𝛿𝛿) Randomized

Sparse Case Lower-bound 1 1/𝛿𝛿 𝛺𝛺(𝑚𝑚𝑠𝑠) Randomized



Future Directions

• Weighted Set Cover Problem

• Improving lower bound for single pass protocols

• Improving Lower bound for multiple pass protocols: for approximate algorithms

• Geometric set cover in higher dimensions

51

Thank You!

Our Results Approximation Passes Space Type

Algorithm 𝑂𝑂( ⁄𝜌𝜌 𝛿𝛿) 𝑂𝑂( ⁄1 𝛿𝛿) �𝑂𝑂(𝑚𝑚𝑛𝑛𝛿𝛿) Randomized

Geometric Algorithm 𝑂𝑂( ⁄𝜌𝜌 𝛿𝛿) 𝑂𝑂( ⁄1 𝛿𝛿) �𝑂𝑂(𝑛𝑛) Randomized
Lower-bound 3/2 1 𝛺𝛺(𝑚𝑚𝑛𝑛) Randomized

Lower-bound 1 1/𝛿𝛿 𝛺𝛺(𝑚𝑚𝑛𝑛𝛿𝛿) Randomized

Sparse Case Lower-bound 1 1/𝛿𝛿 𝛺𝛺(𝑚𝑚𝑠𝑠) Randomized



Geometric Set Cover

• Elements are points in 𝑅𝑅2.
• Sets are discs, axis-parallel rectangles and fat triangles (shapes).
• Main Observation: Transform the sets ℱ to canonical representation ℱ𝐼

1. Each set in ℱ𝐼 is contained by a set in ℱ.
2. Each set in ℱ is union of at most 𝑐𝑐 sets in ℱ𝐼. 
3. The size of ℱ𝐼 is small, given that each of them has few points in them
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