Streaming Algorithms for Set Cover

Sariel Har-Peled (UIUC)

Piotr Indyk (MIT)
Sepideh Mahabadi (MIT)
Ali Vakilian (MIT)

Set Cover Problem

- Input: a collection \mathcal{S} of sets $\mathrm{S}_{1} \ldots \mathrm{~S}_{\mathrm{m}}$ that covers $U=\{1 \ldots n\}$
- i.e., $S_{1} \cup S_{2} \cup \cdots \cup S_{m}=U$
- Output: a subset \mathcal{J} of \mathcal{S} such that:
- J covers U
- $|\mathcal{J}|$ is minimized

```
1,3
```

 2,5

- Classic optimization problem:

- NP-hard
- Greedy $(\ln n)$-approximation algorithm
- Can't do better unless P=NP [Feige 98][Alon, Moshkovitz, Safra 06][Dinur, Steurer 14]

Streaming Set Cover [SGO9]

- Model
- Sequential access to $S_{1}, S_{2}, \ldots, S_{m}$
- One (or few) passes, sublinear (i.e., o(mn)) storage
- (Hopefully) decent approximation factor
- Why?
- A classic optimization problem

- Application in "Big Data": Clustering, Topic Coverage
- One of few NP-hard problems studied in streaming
- Other examples: Clustering, Max-Cut, Sub-Modular Optimization, FPT

Previous and Our Results: Algorithms

Algorithms	Approximation	Passes	Space	Type
Greedy Alg	$O(\log n)$	1	$O(m n)$	Deterministic
[Getoor and Saha 09]	$O(\log n)$	$O(\log n)$	$O(n \log n)$	Deterministic
[Emek and Rósen 14]	$O(\sqrt{n})$	1	$\tilde{O}(n)$	Deterministic
[Demaine, Indyk, M, Vakilian 14]	$O\left(\rho 4^{1 / \delta}\right)$	$O\left(4^{1 / \delta}\right)$	$\tilde{O}\left(m n^{\delta}\right)$	Randomized
[Chakrabarti, Wirth 16]	$O\left(n^{\delta} / \delta\right)$	$1 / \delta-1$	$\tilde{O}(n)$	Deterministic
This Work	$O(\rho / \delta)$	$O(1 / \delta)$	$\tilde{O}\left(m n^{\delta}\right)$	Randomized

ρ = approximation guarantee
for offline Set Cover
$n=$ number of elements
$m=$ number of sets.

Previous and Our Results: Lower-bounds

[Guha and McGregor] A p-pass streaming algorithm of problem \mathbf{P} using s bits of storage yields a $(2 p-1)$ rounds protocol with $(2 p-1) s$ bit of communication for \mathbf{P} in 2-party communication complexity model.

Lower bounds	Approximation	Passes	Space	Type
[Nisan 02]	$(\log n) / 2$	Any	$\Omega(m)$	Randomized
[Emek, Rosen 14]	\sqrt{n}	1	$\Omega(n)$	Randomized
[Demaine, Indyk, M, Vakilian 14]	Constant	Any	$\Omega(m n)$	Deterministic
[Chakrabarti, Wirth 14]	$\delta^{2} n^{1 / \delta}$	$1 / \delta$	$\tilde{\Omega}(n)$	Randomized
This Work	$3 / 2$	1	$\Omega(m n)$	Randomized
This Work	1	$1 / \delta$	$\Omega\left(m n^{\delta}\right)$	Randomized

Our Results

Our Results	Approximation	Passes	Space	Type
Algorithm	$O(\rho / \delta)$	$O(1 / \delta)$	$\tilde{O}\left(m n^{\delta}\right)$	Randomized
Geometric Algorithm	$O(\rho / \delta)$	$O(1 / \delta)$	$\tilde{O}(n)$	Randomized
Lower-bound	$3 / 2$	1	$\Omega(m n)$	Randomized
Lower-bound	1	$1 / \delta$	$\Omega\left(m n^{\delta}\right)$	Randomized
Sparse Case Lower-bound	1	$1 / \delta$	$\Omega(m s)$	Randomized

$$
\begin{aligned}
& s=\text { sparsity of the sets } \\
& \left(s \leq n^{\delta}\right)
\end{aligned}
$$

Outline of the Algorithm

Approach: "dimensionality reduction"

- Covers all but $1 / n^{\delta}$ fraction of elements
- Uses $\mathrm{O}(\rho k)$ sets ($k=\min$ cover size)
- Uses $\tilde{O}\left(m n^{\delta}\right)$ space
- Two passes

Repeat $O(1 / \delta)$ times:

- Covers all the elements
- $O(\rho / \delta)$ approximation
- Uses $\tilde{O}\left(m n^{\delta}\right)$ space
- $O(1 / \delta)$ passes

Dimensionality reduction:

- Covers all but $1 / n^{\delta}$ fraction of elements
- Uses $O(\rho k)$ sets
- Uses $\tilde{O}\left(m n^{\delta}\right)$ space
- Two passes
- Suppose we know $k=$ min cover size
- Select a set R of $k n^{\delta} \log m \log n$ random elements from U
- Pass 1:
- For each set S_{i}, select S_{i} if it covers $\Omega(|R| / k)$ uncovered elements of R
- Otherwise, store projection of S_{i} over R
- Compute a ρ-approximate set cover I^{\prime} over R
- Pass 2:
- Update the set of uncovered elements
- Report sets found in Pass 1

Dimensionality reduction:

- Covers all but $1 / n^{\delta}$ fraction of elements
- Uses $O(\rho k)$ sets

Uses $\tilde{O}\left(m n^{\delta}\right)$ space
Two passes

- Suppose we know $k=$ min cover size
- Select a set R of $k n^{\delta} \log m \log n$ random elements from U
- Pass 1:
- For each set S_{i}, select S_{i} if it covers $\Omega(|R| / k)$ uncovered elements of R
- Otherwise, store projection of S_{i} over R
- Compute a ρ-approximate set cover I^{\prime} over R
- Pass 2:
- Update the set of uncovered elements
- Report sets found in Pass 1

Dimensionality reduction:
 Uses $\tilde{O}\left(m n^{\delta}\right)$ space
 Two passes

- Covers all but $1 / n^{\delta}$ fraction of elements
- Suppose we know $k=$ min cover size
- Select a set R of $k n^{\delta} \log m \log n$ random elements from U
- Pass 1:
- For each set S_{i}, select S_{i} if it covers $\Omega(|R| / k)$ uncovered elements of R
- Otherwise, store projection of S_{i} over R
- Compute a ρ-approximate set cover I^{\prime} over R
- Pass 2:
ρk sets
- Update the set of uncovered elements
- Report sets found in Pass 1

Dimensionality reduction:

- Covers all but $1 / n^{\delta}$ fraction of elements
\Rightarrow - Uses $O(\rho k)$ sets
\Rightarrow - Uses $\tilde{O}\left(m n^{\delta}\right)$ space
\Rightarrow - Two passes
- Suppose we know $k=$ min cover size Increases space by $\log n$
- Select a set R of $k n^{\delta} \log m \log n$ random elements from U
- Pass 1:
- For each set S_{i}, select S_{i} if it covers $\Omega(|R| / k)$ uncovered elements of R
- Otherwise, store projection of S_{i} over R
- Compute a ρ-approximate set cover I^{\prime} over R
- Pass 2:
- Update the set of uncovered elements

$$
\begin{aligned}
& m \frac{|R|}{k} \quad k \leq n \text { sets }: n \log m \\
& =m \cdot k n^{\delta} \log m \log n / k \\
& =\tilde{O}\left(m n^{\delta}\right)
\end{aligned}
$$

Dim $\quad \Rightarrow$ Covers all but $1 / n^{\delta}$ fraction of elements
 Dimensionality reduction: $\Rightarrow . \quad$ Uses $0(p k)$ sets
 \Rightarrow • Uses $\tilde{O}\left(m n^{\delta}\right)$ space
 Two passes

- Suppose we know $k=$ min cover size
- Select a set R of $k n^{\delta} \log m \log n$ random elements from U
- Pass 1:
- For each set S_{i}, select S_{i} if it covers $\Omega(|R| / k)$ uncovered elements of R
- Otherwise, store projection of S_{i} over R
- Compute a ρ-approximate set cover I^{\prime} over R
- Pass 2:
- Update the set of uncovered elements
- Report sets found in Pass 1

Relative (p, ϵ)-approximation

- Let U be a set of elements
- Let $\mathcal{H} \subseteq 2^{V}$ be a collection of subsets of the ground set U Then a subset Z is a relative (p, ϵ)-approximation for (U, \mathcal{H}) if for each $S \in \mathcal{H}$
- $(1-\epsilon) \frac{|S|}{|U|} \leq \frac{|S \cap Z|}{|Z|} \leq(1+\epsilon) \frac{|S|}{|U|}$ if $|S| \geq p|U|$
- $\frac{|S|}{|U|}-\epsilon p \leq \frac{|S \cap Z|}{|Z|} \leq \frac{|S|}{|U|}+\epsilon p \quad$ if $|S|<p|U|$
$(1 \pm \epsilon)$-multiplicative estimator
($\epsilon \boldsymbol{P}$)-additive estimator
[Har-Peled and Sharir] For any p, ϵ and q, a random sample of U of size $O\left(\frac{1}{\epsilon^{2} p}\left(\log |\mathcal{H}| \log \frac{1}{p}+\log \frac{1}{q}\right)\right)$ is a relative (p, ϵ)-approximation of (U, \mathcal{H}) with probability at least $(1-q)$.

Dim \Rightarrow Covers all but $1 / n^{\delta}$ fraction of elements
 Dimensionality reduction: $\Rightarrow: \quad$ Uses ρ s seets
 $\Rightarrow \quad$ Uses $\tilde{O}\left(m n^{\delta}\right)$ space
 \Rightarrow • Two passes

- Suppose we know $k=$ min cover size
- Select a set R of $\boldsymbol{k} \boldsymbol{n}^{\delta} \log \boldsymbol{m} \log \boldsymbol{n}$ random elements from U
- Pass 1:

- Otherwise, store projection of S_{i} over R
- Compute a ρ-approximate set cover I^{\prime} over R
- Pass 2:
- Update the set of uncovered elements
- Report sets found in Pass 1

Algorithm

- Repeat $1 / \delta$ times
- Dimensionality Reduction component
- Covers all but $1 / n^{\delta}$ fraction of elements
- Uses ρk sets
- Uses $\tilde{O}\left(m n^{\delta}\right)$ space
- Two passes

Our Results	Approximation	Passes	Space	Type
Algorithm	$O(\rho / \delta)$	$O(1 / \delta)$	$\tilde{O}\left(m n^{\delta}\right)$	Randomized
Geometric Algorithm	$O(\rho / \delta)$	$O(1 / \delta)$	$\tilde{O}(n)$	Randomized
Lower-bound	$3 / 2$	1	$\Omega(m n)$	Randomized
Lower-bound	1	$1 / \delta$	$\Omega\left(m n^{\delta}\right)$	Randomized
Sparse Case Lower-bound	1	$1 / \delta$	$\Omega(m s)$	Randomized

Lower bound: single pass

- Have seen that $O(1)$ passes can reduce space requirements
- What can(not) be done in one pass?
- We show that distinguishing between $k=2$ and $k=3$ requires $\widetilde{\Omega}$ (mn) space

Many vs One Set-Disjointness

- Two sets cover U iff their complements are disjoint
- Consider the following one-way communication complexity problem:
- Alice: sets S_{1}, \ldots, S_{m}
- Bob: set S_{B}
- Question: is S_{B} disjoint from one of S_{i} 's ?
[Our Result] The randomized one way communication complexity of Many vs. One Set-disjointness is $\Omega(m n)$ if error probability is $1 /$ poly (m).

Many vs One Set-Disjointness

[Our Result] The randomized one way communication complexity of Many vs. One Set-disjointness is $\Omega(\mathrm{mn})$ if error probability is $1 /$ poly (m).

- Alice's sets are selected uniformly at random
- There exist poly(m) sets S_{B} such that if Bob learns answers to all of them, he can recover all S_{i} 's with high probability
- Bob can recover $m n$ random bits from o($m n$) bits of communication -> contradiction

Recovering Alice's Collection

- Recovery procedure
- Suppose that Bob has a set S_{B} that is disjoint from exactly one S_{i} (we do not know which one)
- Call it a "good seed" for S_{i}
- Then Bob queries all extensions $S_{B} \cup\{e\}$ to recover S_{i}
- Bob's queries:
- A random "seed" of size $c \log m$ is disjoint from exactly one S_{i} w.p. $m^{-O(c)}$
- Try $m^{O(c)}$ times

- Recover all S_{i}

Result

[Our Result] The randomized one way communication complexity of Many vs. One Set-disjointness is $\Omega(\mathrm{mn})$ if error probability is $1 /$ poly (m).

Our Results	Approximation	Passes	Space	Type
Algorithm	$O(\rho / \delta)$	$O(1 / \delta)$	$\tilde{O}\left(m n^{\delta}\right)$	Randomized
Geometric Algorithm	$O(\rho / \delta)$	$O(1 / \delta)$	$\tilde{O}(n)$	Randomized
Lower-bound	$3 / 2$	1	$\Omega(m n)$	Randomized
Lower-bound	1	$1 / \delta$	$\Omega\left(m n^{\delta}\right)$	Randomized
Sparse Case Lower-bound	1	$1 / \delta$	$\Omega(m s)$	Randomized

Lower bound: Multipass

- Reduction from Intersection Set Chasing [Guruswami, Onak 13]
- Very "fragile", works only for the exact problem
[Our Result] Any $1 / \delta$ pass exact algorithm of Set Cover requires $\widetilde{\Omega}\left(m n^{\delta}\right)$ space

In s-Sparse Set Cover, each input set is of size at most s.
[Our Result] Any $1 / \delta$ pass exact algorithm of s-Sparse Set Cover requires $\widetilde{\Omega}(m s)$ space (for $s \leq n^{\delta}$)

Set Chasing (n, p) Problem

- p players,
- Each knows an $n * n$ bipartite directed graph

Set Chasing (5,3)

Set Chasing (n, p) Problem

$f_{i}:[n] \rightarrow 2^{[n]}$

Set Chasing (n, p) Problem

$f_{i}:[n] \rightarrow 2^{[n]}$

Set Chasing (n, p) Problem

$$
\begin{aligned}
& f_{i}:[n] \rightarrow 2^{[n]} \\
& \bar{f}_{i}(S)=\cup_{a \in S} f_{i}(a)
\end{aligned}
$$

Set Chasing (n, p) Problem

$$
\begin{aligned}
& f_{i}:[n] \rightarrow 2^{[n]} \\
& \bar{f}_{i}(S)=\cup_{a \in S} f_{i}(a)
\end{aligned}
$$

Set Chasing (n, p) Problem

Set Chasing (n, p) Problem

- p players,
- r rounds; in each round starting from P_{1} a player speaks (to all)
Goal: P_{p} computes $\bar{f}_{1}\left(\bar{f}_{2}\left(\cdots\left(\overline{f_{p}}(s)\right) \cdots\right)\right)$
at the end of the last round.

Interesting instance: $r=p-1$
$\mathrm{CC}(\mathrm{SC}(n, p))=n^{1+\Omega(1 / p)}$ [Feigenbaum et al. 08]

Intersection Set Chasing (n, p) Problem

- Two instances of Set Chasing

Goal: Whether $\overline{f_{1}}\left(\overline{f_{2}}\left(\cdots\left(\overline{f_{p}}(s)\right) \cdots\right)\right)$ and $\overline{f_{p+1}}\left(\overline{f_{p+2}}\left(\cdots\left(\overline{f_{2 p}}(s)\right) \cdots\right)\right)$ intersect?

Intersection Set Chasing (n, p) Problem

- Two instances of Set Chasing

Goal: Whether $\overline{f_{1}}\left(\overline{f_{2}}\left(\cdots\left(\overline{f_{p}}(s)\right) \cdots\right)\right)$ and $\overline{f_{p+1}}\left(\overline{f_{p+2}}\left(\cdots\left(\overline{f_{2 p}}(s)\right) \cdots\right)\right)$ intersect?

Intersection Set Chasing (n, p) Problem

[Guruswami and Onak] Any randomized protocol that solves Intersection Set Chasing (n, p) with error probability less than $1 / 10$, requires $\widetilde{\Omega}\left(\frac{n^{1+1 /(2 p)}}{p^{16}}\right)$ bits of communication where n is sufficiently large and $p \leq \frac{\log n}{\log \log n}$.

Reduction

Reduction

Reduction

Function set

Reduction

Border sets

Reduction

Reduction

Enforce to pick one of the function sets.

Reduction

Reduction

- Size of Set Cover in such an instance is at least $(2 p+1) n+1$
- There exists an intersection between the corresponding nodes iff size of the set cover is exactly $(2 p+1) n+1$

Reduction

- Size of Set Cover in such an instance is at least $(2 p+1) n+1$
- There exists an intersection between the corresponding nodes iff size of the set cover is exactly $(2 p+1) n+1$

Reduction

- Size of Set Cover in such an instance is at least $(2 p+1) n+1$
- There exists an intersection between the corresponding nodes iff size of the set cover is exactly $(2 p+1) n+1$

Reduction

- Size of Set Cover in such an instance is at least $(2 p+1) n+1$
- There exists an intersection between the corresponding nodes iff size of the set cover is exactly $(2 p+1) n+1$

Reduction

- Size of Set Cover in such an instance is at least $(2 p+1) n+1$
- There exists an intersection between the corresponding nodes iff size of the set cover is exactly $(2 p+1) n+1$

Reduction

- $M_{S C}=O(n p), N_{S C}=O(n p), 1 / \delta=O(p)$
- Lower bound of $\widetilde{\Omega}\left(n^{1+1 / 2 p}\right)=\widetilde{\Omega}\left(M_{S C} N_{S C}^{O(\delta)}\right)$

Result

Any Streaming Algorithm that solves the set cover problem with constant probability of error in $\frac{1}{2 \delta}-1$ passes, requires $\widetilde{\Omega}\left(m n^{\delta}\right)$ memory space where $\delta \geq \frac{\log \log n}{\log n}$.

Our Results	Approximation	Passes	Space	Type
Algorithm	$O(\rho / \delta)$	$O(1 / \delta)$	$\tilde{O}\left(m n^{\delta}\right)$	Randomized
Geometric Algorithm	$O(\rho / \delta)$	$O(1 / \delta)$	$\tilde{O}(n)$	Randomized
Lower-bound	$3 / 2$	1	$\Omega(m n)$	Randomized
Lower-bound	1	$1 / \delta$	$\Omega\left(m n^{\delta}\right)$	Randomized
Sparse Case Lower-bound	1	$1 / \delta$	$\Omega(m s)$	Randomized

Future Directions

Our Results	Approximation	Passes	Space	Type
Algorithm	$O(\rho / \delta)$	$O(1 / \delta)$	$\tilde{O}\left(m n^{\delta}\right)$	Randomized
Geometric Algorithm	$O(\rho / \delta)$	$O(1 / \delta)$	$\tilde{O}(n)$	Randomized
Lower-bound	$3 / 2$	1	$\Omega(m n)$	Randomized
Lower-bound	1	$1 / \delta$	$\Omega\left(m n^{\delta}\right)$	Randomized
Sparse Case Lower-bound	1	$1 / \delta$	$\Omega(m s)$	Randomized

- Weighted Set Cover Problem
- Improving lower bound for single pass protocols
- Improving Lower bound for multiple pass protocols: for approximate algorithms
- Geometric set cover in higher dimensions

Thank You!

Geometric Set Cover

- Elements are points in R^{2}.
- Sets are discs, axis-parallel rectangles and fat triangles (shapes).
- Main Observation: Transform the sets \mathcal{F} to canonical representation \mathcal{F}^{\prime}

1. Each set in \mathcal{F}^{\prime} is contained by a set in \mathcal{F}.
2. Each set in \mathcal{F} is union of at most c sets in \mathcal{F}^{\prime}.
3. The size of \mathcal{F}^{\prime} is small, given that each of them has few points in them

Geometric Set Cover

- Elements are points in R^{2}.
- Sets are discs, axis-parallel rectangles and fat triangles (shapes).
- Main Observation: Transform the sets \mathcal{F} to canonical representation \mathcal{F}^{\prime}

1. Each set in \mathcal{F}^{\prime} is contained by a set in \mathcal{F}.
2. Each set in \mathcal{F} is union of at most c sets in \mathcal{F}^{\prime}.
3. The size of \mathcal{F}^{\prime} is small, given that each of them has few points in them

