Streaming Algorithms for Set Cover

Sariel Har-Peled (UIUC)
Piotr Indyk (MIT)
Sepideh Mahabadi (MIT)
Ali Vakilian (MIT)



Set Cover Problem

* Input: a collection § of sets S,...S,, that covers U = {1 ...n}
o i.e.,SIU 52U'°'U Sm —_ U
e Output: a subset J of § such that:

7 covers U D D 25D @2

e || is minimized
* Classic optimization problem: P26
* NP-hard

e Greedy (Inn)-approximation algorithm

e Can’t do better unless P=NP [Feige 98][Alon, Moshkovitz,
Safra 06][Dinur, Steurer 14]



Streaming Set Cover [SG09]

e Model
* Sequential accessto 54, S,, ..., 5,
* One (or few) passes, sublinear (i.e., o(mn)) storage
e (Hopefully) decent approximation factor

—)
. Why? 3D O GO @y

e A classic optimization problem 00000
e Application in “Big Data”: Clustering, Topic Coverage

* One of few NP-hard problems studied in streaming

e Other examples: Clustering, Max-Cut, Sub-Modular Optimization,
FPT



Previous and Our Results: Algorithms
Algorithms mm

O(logn) 0 (mn) Deterministic
Greedy Al

eey e O(logn) n O(n) Deterministic

[Getoor and Saha 09] O(logn) O(logn) O(nlogn)  Deterministic

[Emek and Résen 14] 0(\/n) 1 é(n) Deterministic

[Demaine, Indyk, M, Vakilian 14] 0(p41/6) 0(41/6) O(mn‘s) Randomized

[Chakrabarti, Wirth 16] 0(n?/8) 1/6 —1 0(n) Deterministic
0(p/5) | 0(1/8)

p = approximation guarantee n = number of elements

for offline Set Cover m = number of sets.



Previous and Our Results: Lower-bounds

[Guha and McGregor]| A p-pass streaming algorithm of problem P using s bits of
storage yields a (2p — 1) rounds protocol with (2p — 1)s bit of communication for
P in 2-party communication complexity model.

COCLLUL N Approximation | Passes | Space | Type

[Nisan 02] (logn)/2 Any (m)  Randomized

[Emek, Rosen 14] Vn 1 N(n) Randomized
[Demaine, Indyk, M, Vakilian 14] Constant Any J(mn) Deterministic
[Chakrabarti, Wirth 14] 52nl/é 1/6 f)(n) Randomized

This Work




Our Results
| OurResults | Approximation | Passes | Space |  Type |

Algorithm 0(p/5) 0(1/8) O(@mn®) Randomized «
Geometric Algorithm 0(p/d) 0(1/6) O(n)  Randomized
Lower-bound 3/2 1 A(mn) Randomized
Lower-bound 1 1/6  0(@mn®) Randomized
Sparse Case Lower-bound 1 1/6 J(ms) Randomized
ol *o s = sparsity of the sets
° (s < n%)




Outline of the Algorithm

Approach: “dimensionality reduction”
e Covers all but 1/n9 fraction of elements
e Uses O(pk) sets (k = min cover size)
e Uses O(mn9) space
* Two passes

Repeat O(1/0) times:
e Covers all the elements
* O(p/d) approximation
e Uses O(mn9) space
e 0(1/6) passes



Covers all but 1/n9 fraction of elements
Uses O (pk) sets

Uses O (mn?) space

Two passes

Dimensionality reduction:

Suppose we know k = min cover size
Select a set R of kndlogmlogn random elementsfrom U

Pass 1:
* ForeachsetS,, selectS; ifit covers Q(|R|/k) uncovered elements of R
* Otherwise, store projection of S; over R

Compute a p-approximate set cover I' over R

Pass 2:
e Update the set of uncovered elements

Report sets found in Pass 1
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Covers all but 1/n9 fraction of elements
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Covers all but 1/n9 fraction of elements

Dimensionality reduction: S

Uses O (mn?) space
m Two passes

Suppose we know k = min cover size Increases space by logn
Select a set R of kn®logmlogn random elements from U
Pass 1:

* ForeachsetS,;, select S, if it covers Q(|R|/k) uncovered elements of R
* Otherwise, store projection of S; over R

Compute a p-approximate set cover I' over R mﬂ k <nsets: nlogm
. k
Pass =m - kn®logmlogn/k

e Update the set of uncovered elements A s
= 0(mn?°)
Report sets found in Pass 1



= ¢  Covers all but 1/n% fraction of elements

Dimensionality reduction: =+ uses oG sets

= ¢ Uses O(mn?®)space
m Two passes

Suppose we know k = min cover size
Select aset R of kn®logmlogn random elements from U

Pass 1:

* ForeachsetS;, select S, if it covers A(|R|/k) uncovered elements of R
* Otherwise, store projection of S; over R

Compute a p-approximate set cover I' over R

Pass 2:
e Update the set of uncovered elements

Report sets found in Pass 1



Relative (p, €)-approximation

e Let U be a set of elements
e Let £ < 2" be a collection of subsets of the ground set U

Then a subset Z is a relative (p, €)-approximation for (U, H) if
foreachS e H

|S] |SNZ]| S| .
° —_ < < _— >
(1—¢€) oS = (1+¢€) 0] if |S| = p|U|
+ ep if |S| < p|U|

S| ISnz| S| (1 £ €)-multiplicative estimator
< <

ED S =
ol P =Tz =

(ep)-additive estimator

[Har-Peled and Sharir] For any p, € and g, a random sample of U of size
0(% (log|H| log% + log%)) is a relative (p, €)-approximation of (U, H)
with probability at least (1 — q).




= ¢  Covers all but 1/n% fraction of elements

Dimensionality reduction: = usespkses

= ¢ Uses O(mn?®)space
m Two passes

Suppose we know k = min cover size
Select aset R of kn®logmlogn random elements from U

Pass 1. Relati 1/n%, 1/2)-approximatj
e For each seﬂaﬁlz’? ge{ect]S/i it PROvLTS §C|R|/k) uncovered elements of R
* Otherwise, store projection of S; over R

Compute a p-approximate set cover I' over R

Pass 2:
e Update the set of uncovered elements

Report sets found in Pass 1



Algorithm

* Repeat 1/6 times
* Dimensionality Reduction component

e Covers all but 1/n? fraction of elements
e Uses pk sets

«  Uses O(mn?%)space

*  Two passes

____ OurResults___| Approximation | Passes | Space | _Type

Algorithm 0(p/d) 0(1/8) O(@mn®) Randomized «
Geometric Algorithm 0(p/6) 0(1/9) 0(n) Randomized

Lower-bound 3/2 1 A(mn) Randomized «

Lower-bound 1 1/6§  0(mn°) Randomized

Sparse Case Lower-bound 1 1/6 (ms) Randomized
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Lower bound: single pass

e Have seen that O(1) passes can reduce space
requirements

e What can(not) be done in one pass?

e We show that distinguishing between k = 2and k = 3
requires ) (mn) space



Many vs One Set-Disjointness

* Two sets cover U iff their complements are disjoint

e Consider the following one-way communication
complexity problem:
e Alice: sets 54, ..., S,
e Bob: set S
* Question: is Sg disjoint from one of §;’s ?

[Our Result] The randomized one way communication complexity of Many
vs. One Set-disjointness is Q(mn) if error probability is 1/poly(m).




Many vs One Set-Disjointness

[Our Result] The randomized one way communication complexity of Many
vs. One Set-disjointness is Q(mn) if error probability is 1/poly(m).

e Alice’s sets are selected uniformly at random

n

e There exist poly(m) sets S such that if Bob 2(1)18181---
learns answers to all of them, he can recover ml 1110101

all S;’s with high probability :
0010111 ---

e Bob can recover mn random bits from o(mn) e
bits of communication -> contradiction ﬁ =

110
010
100

100



Recovering Alice’s Collection

e Recovery procedure

e Suppose that Bob has a set Sp that is disjoint from exactly one S,
(we do not know which one)

e Callit a “good seed” for §;
0110101110

e Then Bob queries all extensions Sz U {e} 1010101 ---010 LA
to recover S; 0110101--100 !
0010111100 "
e Bob’s queries: FI
e Arandom “seed” of size clogm is disjoint v,

from exactly one S; w.p. m~9(¢)

%i [0100010 000]

e Try m9() times

* Recover all §;
19



Result

[Our Result] The randomized one way communication complexity of Many
vs. One Set-disjointness is .(mn) if error probability is 1/poly(m).

| OurResults | Approximation | Passes | Space | _ Type

Algorithm 0(p/9d) 0(1/8) O(@mn®) Randomized
Geometric Algorithm 0(p/d) 0(1/8) O(n)  Randomized
Lower-bound 3/2 1 J(mn) Randomized
Lower-bound 1 1/§  0(@mn®) Randomized

Sparse Case Lower-bound 1 1/6 I(ms) Randomized

20
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Lower bound: Multipass

* Reduction from Intersection Set Chasing [Guruswami, Onak 13]
* Very “fragile”, works only for the exact problem

[Our Result] Any 1/6 pass exact algorithm of Set Cover requires ﬁ(mn‘s) space

In s-Sparse Set Cover, each input set is of size at most s.

[Our Result] Any 1/6 pass exact algorithm of s-Sparse Set Cover requires ((ms)
space (for s < n?%)




Set Chasing(n, p) Problem

P, Py

) 0

e p players,

e Each knows an n * n bipartite
directed graph

Set Chasing (5,3)

22



Set Chasing(n, p) Problem



Set Chasing(n, p) Problem




Set Chasing(n, p) Problem

fi:[n] - 2™
fi($) = Uges fi(a)

25



Set Chasing(n, p) Problem

S{g

fi:[n] - 2™
fi($) = Uges fi(a)

26



Set Chasing(n, p) Problem




Set Chasing(n, p) Problem

e p players,
e 7 rounds;in each round starting from P;
a player speaks (to all)

Goal: P, computes f; (fz ( (fp(s)) ))

at the end of the last round.

Interesting instance: r =p — 1

CC(SC(n, p)) = n*T2(A/P) [Feigenbaum et al.
08]

28



Intersection Set Chasing(n, p)
Problem

 Two instances of Set Chasing

Goal: Whether f; (]?2 ( (fp(s)) )) and fp41 (fp+2 ( (E(s)) )) intersect?




Intersection Set Chasing(n, p)
Problem

* Two instances of Set Chasing

Goal: Whether f; (fz ( (ﬁ(s)) )) and f, 41 (fp+2 ( (E(s)) )) intersect?

30



Intersection Set Chasing(n, p)
Problem

[Guruswami and Onak] Any randomized protocol that solves Intersection Set
n1+1/(2p)

p16

Chasing(n, p) with error probability less than 1/10, requires ( ) bits

logn
loglogn’

of communication where n is sufficiently large and p <

31



Reduction




Reduction

%



Reduction

| 4

L 2R 4 L 2R 4
L 2R 4 L 2R 4
L 2R 4 L 2R 4

L 2R 4

Function set
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Reduction

Function set
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Reduction

L 2R 4 L 4
LR/ L 2R 4
¢ g

L 2R 4 L 4
L 2R 4 L 2R 4

Function set
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Reduction

L 2R 4
L 2R 4
'R 4

L 4
L 2R 4

L 2R 4
L 2R 4
L 4

® o
L 4

Function set
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Reduction

L 2R 4 L 2R 4
L 2R 4 L 2R 4
L 2R 4 L 2R 4
L AR 4 L 4

¢ L 2R 4

Function set
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Reduction

Border sets

39



Reduction

40



Reduction

Enforce to pick one of the function sets.

41



Reduction

¢ ¢ L 4 L4 L4 L4

CO\ @ )
ao-f»o
@ &> ‘()'o

0 D) «CX)
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Reduction

o Size of Set Cover in such an instance isat least 2p + 1)n + 1

e There exists an intersection between the corresponding nodes iff

size of the set coveris exactly 2p + 1)n + 1

¢ | 4 ¢ L4 L4 L4

<x<>> GR7R)— D> DO DS~
@T@O> (CA’ QW A’A‘(iof‘}ﬂ SR>
qo’gqo '«’s CONCD ‘)@‘Q}b
ao)‘ @;(3) Q "’ b"cp O :» ‘<x>
ao;\t@ro)‘««xo\ < & S SO—0
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Reduction

o Size of Set Cover in such an instance isat least 2p + 1)n + 1
e There exists an intersection between the corresponding nodes iff
size of the set coveris exactly 2p + 1)n + 1

o o & o o o
g SO0, S DSOS MOD Yk
‘(( o4 ’d(y ( 2~ )&( % ‘OD

D
S (B A & SN )

T\ NI Xos,
aox\@rcb‘?@ 5“((/'0' '()'O
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Reduction

o Size of Set Cover in such an instanceisatleast 2p + 1)n + 1
e There exists an intersection between the corresponding nodes iff
size of the set coveris exactly 2p + 1)n + 1
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Reduction

o Size of Set Cover in such an instance isat least 2p + 1)n + 1
e There exists an intersection between the corresponding nodes iff
size of the set coveris exactly 2p + 1)n + 1
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Reduction

o Size of Set Cover in such an instance isat least 2p + 1)n + 1
e There exists an intersection between the corresponding nodes iff
size of the set coveris exactly 2p + 1)n + 1

48



Reduction

* Mgc = 0(np), Ngc = 0(np), 1/6 = 0(p)

* Lower bound of Q(n!*1/2P) = ﬁ(MSCNSOC(‘S)

)

49



Result

Any Streaming Algorithm that solves the set cover problem with constant

probability of error in ~ -1 passes , requires ﬁ(mn‘s) memory space where

26

5210g10gn.

logn
____ OurResults | Approximation | Passes | Space | _ Type
Algorithm 0(p/9d) 0(1/8) O(@mn®) Randomized
Geometric Algorithm 0(p/d) 0(1/8) O(n)  Randomized
Lower-bound 3/2 1 J(mn) Randomized
Lower-bound 1 1/§  0(@mn®) Randomized

Sparse Case Lower-bound 1 1/6 I(ms) Randomized
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Future Directions

| OurResults ___| Approximation | Passes | Space | _ Type __

Algorithm 0(p/6) 0(1/6)
Geometric Algorithm 0(p/6) 0(1/6)
Lower-bound 3/2 1
Lower-bound 1 1/6
Sparse Case Lower-bound 1 1/6

Weighted Set Cover Problem

Improving lower bound for single pass protocols

Improving Lower bound for multiple pass protocols: for approximate algorithms

Geometric set cover in higher dimensions

O(mn%) Randomized

O(n)  Randomized
A(mn) Randomized
Q(mn®%) Randomized

A(ms) Randomized

Thank Youl

51



Geometric Set Cover

 Elements are points in R?.
e Sets are discs, axis-parallel rectangles and fat triangles (shapes).

* Main Observation: Transform the sets F to canonical representation F'
1. Eachsetin F'is contained by a setin F.
2. Each setin F is union of at most c¢ sets in F'.
3. The size of F' is small, given that each of them has few points in them

52
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